STATISTICS I-2nd Year Economics\Management Science BSc - $2^{\text {nd }}$ semester - 30/05/2016

$1^{\text {st }}$ Part of Normal Season Exam- Theoretical Part (15 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (35 points). During the exam, no clarifications will be provided. GOOD LUCK!

Name: \qquad no \qquad
Each of the following 2 groups of multiple-choice questions is worth 10 points (1 mark). Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade in each of the 2 groups varies between a minimum of 0 and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross (X)

1. Let, $A, B \subset S$ be events of a sample space S with positive probability. It is known that when A occurs, B does not occur.

A and B are a partition of the sample space S	\mathbf{T}	
Then A and B are independent events.		X
$P[\bar{A} \cap \bar{B}]=1-P(A) \cdot P(B)$		X
$P(A-B) \leq P(A)$	X	

2. Let X be a random variable with cumulative distribution function $F_{X}(x)$.

If X is discrete, $\forall h>0, x \in \mathbb{R}$, then $F_{X}(x) \leq P(X \leq x+h)$	T	
Let $Y=\varphi(X)$ be a function of X. If X is a discrete random variable, then Y can be a mixed random variable.		X
Let X be discrete, then $F_{X}(x)$ has range \mathfrak{R} and co-domain [0,1].	X	
If $a, b \in D_{X}, a<b$ then $P(a \leq X \leq b)=F_{X}(b)-F_{X}(a-0)$	X	

3. Let A, B be events of a sample space S . Assuming that A and B are mutually exclusive events show that $P(B \mid A \cup B)=1-P(A) / P(A \cup B)$. Note: this question should be duly formalized and justified. [Cotação: 15]

$1^{\text {st }}$ Part of Normal Season Exam- Theoretical Part (15 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (35 points). During the exam, no clarifications will be provided. GOOD LUCK!

Name: \qquad no \qquad
Each of the following 2 groups of multiple-choice questions is worth 10 points (1 mark). Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade in each of the 2 groups varies between a minimum of 0 and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross (X)

1. Let, $A, B \subset S$ be events of a sample space S with positive probability. It is known that events A and B can occur simultaneously..

$P(A-B) \leq P(A)$	T	
$P[\bar{A} \cap \bar{B}]=1-[P(A)+P(B)]$	X	
If $P(A \mid B)=P(A)$ then A and B are independent events.	X	
A and B are a partition of the sample space S	X	

2. Let X be a random variable with cumulative distribution function $F_{X}(x)$.

If X is continuous, $\forall h>0, x \in \mathbb{R}$ then $F_{X}(x) \leq P(X \leq x+h)$	X	
Let $Y=\varphi(X)$ be a function of X. If X is a mixed random variable, then Y can be a continuous random variable.	X	
Let X be continuous, then $f_{X}(x)$ has range \mathfrak{R} and co-domain $[0,+\infty]$.	X	
If $a, b \in D_{X}, a<b$ then $P(a<X<b)=F_{X}(b)-F_{X}(a-0)$		X

3. Let A, B be events of a sample space Ω. Assuming that A and B are mutually exclusive events show that $P(B \mid A \cup B)=1-P(A) / P(A \cup B)$. Note: this question should be duly formalized and justified. [Cotação: 15]

STATISTICS I - 2nd Year Economics\Management Science BSc - 2nd semester - 30/05/2016 $1^{\text {st }}$ Part of Normal Season Exam - Practical Part (45 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an \mathbf{X} the corresponding square. The other questions should be answered in the provided space.

Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.
Open questions should be duly justified and formalized.
Name: \qquad №:

Espaço reservado para a classificação

a) (10)
a) (10)
2c)(15)
T:
1
b) (15)
2
b) (15)
P:
-

1. The two more important wine producers (V_{1} and V_{2}) produce respectively 30% and 40% of all the wine bottles bought by a restaurant. The owner of the restaurant noticed that 20% of the bottles bought from V_{1} and 15% of those bought from V_{2} has a minor quality. It is also known that the percentage of wine of minor quality from other producers is 10%.
a) If 10 bottles were randomly chosen from the restaurant stock, with replacement, compute the probability that 6 of them came from wine producer V_{2}. (signal with an X the right answer,)
(i) 0,5956
(ii) 0,1797
(iii) 0,9452
(iv) $0,1115 \mathrm{X}$
b) A bottle was randomly chosen and it was of minor quality. Find the probability that it came from producer V_{1}.

$$
P(V 1)=0.3 ; P(V 2)=0.4 ; P(M \mid V 1)=0.2 ; P(M \mid V 2)=0.15 ;
$$

2. Let (X, Y) be a two dimensional continuous random variable with joint probability density function given by:

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
k x+y & (0<x<1, \\
0 & \text { elsewhere }
\end{array}\right.
$$

a) Find the value of k.
b) Determine the marginal cumulative distribution function of X and use it to compute the $1^{\text {st }}$ Quartile.
c) Compute the $E\left(X \left\lvert\, Y=\frac{1}{2}\right.\right)$.

STATISTICS I - 2nd Year Economics\Management Science BSc - 2nd semester - 30/05/2016

 $1^{\text {st }}$ Part of Normal Season Exam - Practical Part (45 minutes)This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an \mathbf{X} the corresponding square. The other questions should be answered in the provided space.

Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.
Open questions should be duly justified and formalized.
Name: \qquad №: \qquad

Espaço reservado para a classificação

a) (10)
1
b) (15)
a) (10)
2 c) (10)
T:
2
b) (20)
$\underline{\square}$

P:

1. The two more important wine producers (V_{1} and V_{2}) produce respectively 40% and 30% of all the wine bottles bought by a restaurant. The owner of the restaurant noticed that 20% of the bottles bought from V_{1} and 15% of those bought from V_{2} has a minor quality. It is also known that the percentage of wine of minor quality from other producers is 10%.
a) If 20 bottles were randomly chosen from the restaurant stock, with replacement, compute the probability that 8 of them came from wine producer V_{1}. (signal with an X the right answer,)
(i) 0,5956(ii) $0,1797 \mathrm{X}$
(iii) 0,9452
(iv) 0,1115
b) A bottle was randomly chosen and it was of minor quality. Find the probability that it came from producer V_{2}.
2. Let (X, Y) be a two dimensional continuous random variable with joint probability density function given by:

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
k x+y & (0<x<1, \\
0 & \text { elsewhere }
\end{array}\right.
$$

a) Find the value of k.
b) Determine the marginal cumulative distribution function of Y and use it to compute the $1^{\text {st }}$ Quartile.
d) Compute the $E\left(Y \left\lvert\, X=\frac{1}{2}\right.\right)$.

