

1st Part of Normal Season Exam– Theoretical Part (15 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (35 points). During the exam, no clarifications will be provided. **GOOD LUCK!**

Name: _

n⁰

Each of the following 2 groups of multiple-choice questions is worth 10 points (1 mark). Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade in each of the 2 groups varies between a minimum of 0 and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross (X)

1. Let, $A, B \subset S$ be events of a sample space S with <u>positive probability</u>. It is known that when <u>A occurs</u>, <u>B does</u> <u>not occur</u>.

	Т	F
A and B are a partition of the sample space S		Х
Then A and B are independent events.		Х
$P[\bar{A} \cap \bar{B}] = 1 - P(A).P(B)$		Х
$P(A-B) \le P(A)$	Х	

2. Let *X* be a random variable with cumulative distribution function $F_X(x)$.

	Т	F
If X is discrete, $\forall h > 0, x \in \mathbb{R}$, then $F_X(x) \le P(X \le x + h)$	Х	
Let $Y = \varphi(X)$ be a function of X. If X is a discrete random variable, then Y can be a mixed random variable.		х
Let X be discrete, then $F_X(x)$ has range \Re and co-domain [0,1].	Х	
If $a, b \in D_X, a < b$ then $P(a \le X \le b) = F_X(b) - F_X(a - 0)$	Х	

3. Let *A*, *B* be events of a sample space S. Assuming that *A* and *B* are mutually exclusive events show that $P(B|A \cup B) = 1 - P(A)/P(A \cup B)$. Note: this question should be duly formalized and justified. [Cotação: 15]

1st Part of Normal Season Exam– Theoretical Part (15 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (35 points). During the exam, no clarifications will be provided. **GOOD LUCK!**

Name: _______nº_____

Each of the following 2 groups of multiple-choice questions is worth 10 points (1 mark). Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade in each of the 2 groups varies between a minimum of 0 and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross (X)

1. Let, $A, B \subset S$ be events of a sample space S with <u>positive probability</u>. It is known that <u>events A and B can occur</u> <u>simultaneously</u>.

	Т	F
$P(A-B) \le P(A)$	Х	
$P[\bar{A} \cap \bar{B}] = 1 - [P(A) + P(B)]$		Х
If $P(A B) = P(A)$ then A and B are independent events.	Х	
A and B are a partition of the sample space S		Х

2. Let *X* be a random variable with cumulative distribution function $F_X(x)$.

		F
If <i>X</i> is continuous, $\forall h > 0, x \in \mathbb{R}$ then $F_X(x) \le P(X \le x + h)$	Х	
Let $Y = \varphi(X)$ be a function of X. If X is a mixed random variable, then Y can be a continuous random variable.		х
Let X be continuous, then $f_X(x)$ has range \Re and co-domain $[0, +\infty]$.	Х	
If $a, b \in D_X, a < b$ then $P(a < X < b) = F_X(b) - F_X(a - 0)$		Х

3. Let *A*, *B* be events of a sample space Ω . Assuming that *A* and *B* are mutually exclusive events show that $P(B|A \cup B) = 1 - P(A)/P(A \cup B)$. Note: this question should be duly formalized and justified. [Cotação: 15]

STATISTICS I - 2nd Year Economics\Management Science BSc - 2nd semester - 30/05/2016 1st Part of Normal Season Exam – Practical Part (45 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an X the corresponding square. The other questions should be answered in the provided space.

Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

Open questions should be duly justified and formalized.

Name:

Nº:

	Espaço res	servado para a classifio	cação	
a) (10) 1	a) (10) 2	2 c) (15)	T:	
b) (15)	b) (15)		P:	

- 1. The two more important wine producers (V_1 and V_2) produce respectively 30% and 40% of all the wine bottles bought by a restaurant. The owner of the restaurant noticed that 20% of the bottles bought from V_1 and 15% of those bought from V_2 has a minor quality. It is also known that the percentage of wine of minor quality from other producers is 10%.
 - a) If 10 bottles were randomly chosen from the restaurant stock, with replacement, compute the probability that 6 of them came from wine producer V_2 . (signal with an X the right answer,)
 - (iv) 0,1115 X (i) 0,5956 □ (ii) 0,1797 🛛 (iii) 0,9452 🛛
 - b) A bottle was randomly chosen and it was of minor quality. Find the probability that it came from producer V_1 .

P(V1) = 0.3; P(V2) = 0.4; P(M|V1) = 0.2; P(M|V2) = 0.15;

2. Let (X, Y) be a two dimensional continuous random variable with joint probability density function given by:

$$f_{X,Y}(x,y) = \begin{cases} kx + y & (0 < x < 1, \quad 0 < y < 1) \\ 0 & elsewhere \end{cases}$$

a) Find the value of k.

b) Determine the marginal cumulative distribution function of *X* and **use it** to compute the 1st Quartile.

c) Compute the $E\left(X|Y=\frac{1}{2}\right)$.

STATISTICS I - 2nd Year Economics\Management Science BSc – 2nd semester – 30/05/2016 1st Part of Normal Season Exam – Practical Part (45 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an **X** the corresponding square. The other questions should be answered in the provided space.

Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

Open questions should be duly justified and formalized.

Name:

N⁰:

			Espaço rese	rvado para a classificaçã	ão
1	a) (10)	2	a) (10)	2 c) (10)	T:
I	b) (15)	2	b) (20)		P:

- **1.** The two more important wine producers (V_1 and V_2) produce respectively 40% and 30% of all the wine bottles bought by a restaurant. The owner of the restaurant noticed that 20% of the bottles bought from V_1 and 15% of those bought from V_2 has a minor quality. It is also known that the percentage of wine of minor quality from other producers is 10%.
- a) If 20 bottles were randomly chosen from the restaurant stock, with replacement, compute the probability that 8 of them came from wine producer V_1 . (signal with an X the right answer,)
 - (i) 0,5956 □ (ii) 0,1797 **X** (iii) 0,9452 □ (iv) 0,1115 □
- **b)** A bottle was randomly chosen and it was of minor quality. Find the probability that it came from producer V_2 .

2. Let (X, Y) be a two dimensional continuous random variable with joint probability density function given by:

$$f_{X,Y}(x,y) = \begin{cases} kx + y & (0 < x < 1, \quad 0 < y < 1) \\ 0 & elsewhere \end{cases}$$

a) Find the value of k.

b) Determine the marginal cumulative distribution function of *Y* and **use it** to compute the 1st Quartile.

d) Compute the $E\left(Y|X=\frac{1}{2}\right)$.